Questions Bank

Paper Name: Differential Equations

Course Name: Generic Elective-3, for Hons Courses, Under CBCS
1.What is the difference between particular and singular solutions of an ordinary differential equation.
2.Solve the ordinary differential equation $\left(x D^{3}+4 D^{2}\right) y=8 e^{x}$, where $D=\frac{d}{d x}$.
3. Solve

$$
\frac{d y}{d x}+(x+1) y=e^{x^{2}} y^{3}
$$

4. Let $\left(\sin y \cos y+x \cos ^{2} y\right) d x+x d y=0$. Test for exactness. If it is not exact then find an integrating factor.
5. Find the orthogonal trajectories of family of curves $4 x^{2}+y^{2}=c$, where c being a parameter.
6.Find a general solution of differential equation $\left(D^{4}+a^{4}\right) y=0$, where $D=\frac{d}{d x}$.
6. Show that $e^{3 x}$ and $x e^{3 x}$ form a basis of the following differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$. Find also the solution that satisfies the conditions $y(0)=-1.4, y^{\prime}(0)=4.6$.
7. Use the method of undetermined coefficients to find the particular solution of the differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}$.
9.Let $y^{\prime \prime}+\mathrm{p}(x) y^{\prime}+q(x) y=0$. Suppose $y_{1}(x)$ and $y_{2}(x)$ are two solutions of given differential equation. Show that linear combination of two solutions $\left(y_{1}(x), y_{2}(x)\right)$ on an open interval I , is again a solution of given differential equation on I.
8. Find a homogeneous linear ordinary differential equation for which to functions x^{3} and x^{-2} are solutions. Show also linear independence by considering their Wronskian.
11.Find the particular solution of the linear system that satisfies the stated initial conditions:

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=-5 y_{1}+2 y_{2}, y_{1}(0)=1 \\
& \frac{d y_{2}}{d t}=2 y_{1}-2 y_{2}, y_{2}(0)=-2
\end{aligned}
$$

12. Use the method of variation of parameters to find the general solution of the differential equation $\left(D^{2}-I\right) y=\frac{1}{\cosh x}$.
13.Find a general solution of differential equation $x^{2} y^{\prime \prime}-x y^{\prime}+y=x \ln |x|$.
14.Find the radius of convergence of the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}(x-1)^{2 n}}{4^{n}} .
$$

15.Find a power series solution of the following differential equation (in power of x) $y^{\prime \prime}+x y^{\prime}-2 y=$ 0.
16.Find a partial differential equation by eliminating a and b
i) $z=a x+b y+a^{2}+b^{2}$
ii) $z=a(x+y)+b$.
17.Find the general solution of partial differential equation $y z u_{x}-x z u_{y}+x y\left(x^{2}+y^{2}\right) u_{z}=0$.
18. Solve the initial value problem $u_{x}+2 u_{y}=0, u(0, y)=4 e^{-2 y}$ using the method of separation of variables.
19.Obtain the canonical form of the equation $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0$ and hence find the general solution.
20.Reduce the following partial differential equation with constant coefficients, $u_{x x}+2 u_{x y}+5 u_{y y}+$ $u_{x}=0$ into canonical form.
21.Reduce the equation $y u_{x}+u_{y}=x$ to canonical form and obtain the general solution.
22.Find the solution of quasi-linear partial differential equation $u(x+y) u_{x}+u(x-y) u_{y}=x^{2}+y^{2}$, with the Cauchy data $u=0$ on $y=2 x$.
23.Show that

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} .
$$

24.Find a solution $\left(a^{2}-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, a \neq 0$ by reduction to the Legendre equation.
25. Find a general solution of $y^{\prime \prime}+2 y^{\prime}-24 y=0$ by Conversion of an nth order ODE to a System.

